

Tetrahedron Letters 43 (2002) 523-525

TETRAHEDRON LETTERS

Mycaloside A, a new steroid oligoglycoside with an unprecedented structure from the Caribbean sponge *Mycale laxissima*

Anatoly I. Kalinovsky, Alexandr S. Antonov, Shamil Sh. Afiyatullov, Pavel S. Dmitrenok, Evgeny V. Evtuschenko and Valentin A. Stonik*

Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok-22, Prospect 100-letya Vladivostoka, Russia

Received 10 October 2001; revised 5 November 2001; accepted 14 November 2001

Abstract—The structure of mycaloside A (1) isolated from the Caribbean sponge *Mycale laxissima* has been established as (22E, 20R, 24S)-3-O-{ α -D-Galp(1 \rightarrow 2)- β -D-Arap(1 \rightarrow 3)-[β -D-Galp(1 \rightarrow 4)]- β -D-Glcp}-3 β ,4 β ,15 α ,21-tetrahydroxy-24-methylcholesta-5,22-diene by interpretation of spectral data and chemical transformations. © 2002 Elsevier Science Ltd. All rights reserved.

In the animal kingdom, steroid and triterpene glycosides are the predominant metabolites of starfishes and sea cucumbers, respectively.^{1–3} More recently, this type of glycoside has been isolated from some sponges. To the best of our knowledge, about 20 sponge glycosides have been reported to date, including sarasinosides from *Asteropus* spp.^{4–7} and *Melophlus isis*,⁸ erylosides and formosides from *Erylus* spp.,^{9–12} ulososides from *Ulosa* sp.^{13,14} pachastrelloside A from a *Pachastrella* sp.,¹⁵ wondosterols from unidentified sponges and¹⁶ ectyoplasides and feroxosides from *Ecty-oplasia ferox*^{17,18} The majority of these glycosides belong to nor-lanostane-triterpenoid saponins, derived from lanosterol or related triterpenes as a result of oxidative elimination of one or two methyl groups.

In the course of our continuing interest in marine oligoglycosides,¹⁹ we have isolated a steroid oligoglycoside, mycaloside A (1) from the Caribbean sponge *Mycale laxissima* (Demospongiae, order Poecilosclerida,

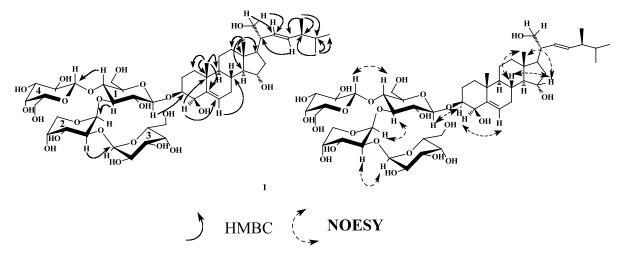


Figure 1. Key HMBC and NOESY correlations of Mycaloside A.

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)02184-0

Keywords: marine metabolites; steroid glycosides; two-dimensional NMR spectroscopy. * Corresponding author. Tel.: 7-4232-311168; fax: 7-4232-314050; e-mail: piboc@stl.ru

family Mycalidae). The sponge was collected by hand near San-Felipe Island, Cuba. The lyophilized specimens (0.3 kg) were macerated and sequentially extracted with ethyl acetate $(2 \times 2 L)$ and ethanol $(3 \times 2$ L). Compound 1 (28 mg) was obtained from ethanolsoluble materials by partition between water and nbutanol followed by column chromatography of the butanol extract on Sephadex LH-20 (CHCl₃-EtOH, 1:1), Polychrome-1 (50% EtOH), silica gel L (CHCl₃-EtOH, 5:4) and by HPLC on Zorbax ODS (45% EtOH) and Zorbax-Si (CHCl₃-EtOAc-MeOH, 4:6:5) columns. Mycaloside A (1), mp 217–220°C, $[\alpha]_D^{25}$ –23.0 (c 0.5, MeOH), analysed for C₅₁H₈₄O₂₃ by combined HRMALDI TOF MS (positive mode) and ¹³C NMR analyses. A quasi-molecular ion peak at m/z 1087.5250 $(M+Na)^+$ (C₅₁H₈₄NaO₂₃ requires m/z 1087.5297) was detected. Hydrolysis of 1 with 2 M HCl (2 h, 100°C) gave glucose (1), arabinose (1) and galactose (2), identified by GLC as the corresponding aldononitrile peracetates. The monosaccharides themselves were isolated from the hydrolysate by HPLC on SeparonTM SGX NH₂ column (90% acetonitrile) and shown to be of the D-series by measurement of their optical rotations.

The sequence of monosaccharides, interglycosidic linkages and configurations of glycosidic bonds in 1 were determined by NMR including HMBC and NOESY (see Fig. 1) and various ${}^{1}\text{H}{-}^{1}\text{H}$ COSY experiments (Table 1). In addition, the structure of the carbohydrate chain was confirmed by methylation of 1 (DMSO, NaH, CH₃I) followed by methanolysis and acetylation, which gave methyl 2,3,4,6-tetra-*O*-methylgalactopyranoside, methyl 2-*O*-acetyl-3,4-di-*O*-methylgalactopyranoside and methyl 3,4-di-*O*-acetyl-2,6-di-*O*-methylglucopyranoside, identified by comparison with standard samples using GLC and GLC-MS. Only D-glucose was not destroyed upon periodate oxidation followed by acid hydrolysis. It was evident from consideration of

Table 1. NMR data of carbohydrate moiety in 1 (DRX500,^a C₅D₅N+5% CD₃OD)

С	DEPT	δ H (J, Hz)	NOESY	С	DEPT	δ H (J, Hz)	NOESY
11	101.8, d	4.89, d (7.8)	H-3; H-4; H ¹ ₃ ; H ¹ ₅	1 ³	103.3, d	5.77, d (3.6)	H_2^2
2 ¹	76.3, d	4.20, dd (7.8; 9.1)	H_4^1	2 ³	71.0, d ^b	4.60, dd (3.5; 10.0)	
3 ¹	77.4, d	4.47, t (9.2)	H_{5}^{1}	3 ³	71.2, d	4.58, dd (3.1; 9.9)	
4^{1}	74.5, d	4.71, t (9.6)	H_{2}^{1}	4 ³	70.9, d ^b	4.38°	
51	77.6, d	3.75, dt (9.8; 2.8)	H^{1}_{3}	5 ³	73.1, d	4.81,ddd (1.3; 4.7; 7.3)	$H_{4}^{3}; H_{3}^{3}$
6 ¹	60.6, t	4.44°; 4.72°	5	6 ³	62.9, t	4.27, dd (4.6; 11.3) 4.39°	- ⁻ ⁻ ⁻
12	99.3, d	6.61, d (3.5)	$H_{3}^{1}; H_{2}^{2}$	1^{4}	104.2, d	5.31,d (7.7)	$H^{1}_{4}; H^{4}_{3}; H^{4}_{5}$
2 ²	80.2, d	4.73, dd (3.5; 10.0)	H_{1}^{2}	24	72.7, d	4.41, dd (7.7; 9.4)	. 5. 5
3 ²	69.1, d	5.19, dd (3.4; 10.0)	H_4^2	34	74.8, d	4.10, dd (9.5; 3.4)	$H_{4}^{4}; H_{5}^{4}$
4 ²	70.7, d	4.84, brd (3.3)	$H_{3}^{2}H_{5}^{2}$	4^{4}	69.2, d	4.47, brd (3.4)	H_{5}^{4}
5 ²	64.4, t	3.99, dd (1.9; 12.0) 5.51, brd (12.0)	H_4^2	5^{4}	76.2, d	3.95, brt (6.5)	H_{4}^{4}
				64	61.6, t	4.33, dd (6.1; 10.8); 4.37 ^c	

^a 500 MHz for ¹H and 125.8 MHz for ¹³C, assignments were based on COSY45, COSY RCT, DEPT and HMQC experiments.

^b Values can be interchanged.

^c Coupling constants were not determined as a result of overlapping of signals.

С	DEPT	δ H (J, Hz)	NOESY	С	DEPT	δ H (J, Hz)	NOESY
1	37.6, t	1.77, m (e) 1.02, m (a)	H-11 H-3	15	73.4, d	4.21, td (9.0; 3.2)	H-8; CH ₃ -18
2	23.9, t	1.02, m (a) 1.79, m (e) 2.28, m (a)	H-3	16	41.0, t	2.04, m 2.18, m	H-15
3	80.1, d	3.84, dt (12.2; 3.0)	H-1, H-4	17	48.7, d	2.04, m	H-22
4	74.4, d	4.57, d (2.7)	H-3, H-6	18	13.9, q	0.83, s	H-8; H-11; H-20
5	141.9, s	, , ,	,	19	21.1, q	1.40, s	H-8
6	128.7, d	5.73, dd (2.1; 5.2)	H-4	20	48.3, d	2.36, m	H-18
7	32.9, t	2.70, dt (18.9; 5.4) 2.27, m	H-6; H-8, H-15 H-6; H-9; H-14	21	64.9, t	4.01, dd (4.4; 10.5) 3.78, dd (7.0; 10.5)	H-12
8	32.1, d	1.87, m	H-15	22	132.3, d	5.48, dd (8.6; 15.4)	H-17
9	50.8, d	1.02, m		23	135.2, d	5.45, dd (7.6; 15.3)	H-20
10	36.5, s	,		24	43.5, d	1.95, m	
11	20.6, t	1.45, m	H-1	25	33.4, d	1.50, m	
12	39.6, t	2.01, m (e) 1.39, m (a)	H-21	26	19.7, q	0.86, d (7.0)	
13	43.2, s	, (9)		27	20.2, q	0.86, d (7.0)	
14	63.4, d	1.43, m	H-9	28	18.1, q	0.96, d (7.0)	

Table 2. NMR data of aglycone part in 1^a

^a 500 MHz for ¹H and 125.8 MHz for ¹³C, assignments were based on COSY45, COSY RCT, DEPT and HMQC experiments.

mass and NMR data, that the aglycone in 1 must be a C₂₈ tetrahydroxylated steroid, probably similar to 3β,4β-dihydroxy-pregn-5-en-20-one 3-sulfate from the sponge Stylopus australis²⁰ in respect of the A and B ring structures. The 5(6)-position of the double bond and 3B,4B-dihydroxy-substitution were confirmed by ¹H–¹H COSY, HMBC and values of coupling constants (see Fig. 1 and Table 2). The presence of a hydroxy group at C-15 was determined from HMQC and COSY 45 experiments, while its α -configuration followed from H-15 coupling constants and NOESY. Further analysis of NMR data revealed the presence of an additional hydroxyl at C-21, the 22E double bond $(J_{22,23}=15.3)$ Hz) and a C-24 methyl group in the side chain. The S configuration at C-24 was suggested based on comparison of the ¹³C NMR spectrum of 1 with those of related steroids.²¹ NOESY and especially HMBC data indicated that the carbohydrate chain was attached to C-3 in 1.

Mycaloside A is the first steroid oligoglycoside isolated from sponges. So far, only nor-triterpene oligoglycosides^{4–14,17,18} and a few steroid biosides with aglycones oxidized at positions 2α ,3 β ,4 β and $7\alpha^{15,16}$ were isolated from these animals.

Carbohydrate chains such as that of **1** have also not been found. Therefore, **1** has an unprecedented structure consisting of both carbohydrate and aglycone moieties and is unique when compared with all the previously known sponge glycosides.

References

- Burnell, D. J.; ApSimon, J. W. In Marine Natural Products: Chemical And Biological Perspectives; Scheuer, P. J., Ed.; Academic Press: New York, 1983; Vol. 5, pp. 287– 389.
- Stonik, V. A.; Elyakov, G. B. In *Bioorganic Marine Chemistry*; Scheuer, P. J., Ed.; Springer–Verlag: Berlin, 1988; Vol. 2, pp. 59–86.
- 3. Minale, L.; Riccio, R.; Zollo, F. In *Progress in the Chemistry of Organic Natural Products*; Herz, H.; Kirby,

G. W.; Moore, R. E.; Steglich, W.; Tamm, C., Eds.; Springer: New York, 1993; Vol. 62, pp. 75–308.

- Kitagawa, I.; Kobayashi, M.; Okamoto, Y.; Yoshikawa, M.; Hamamoto, Y. *Chem. Pharm. Bull.* **1987**, *35*, 5036– 5039.
- Schmitz, F. J.; Ksebati, M. B.; Gunasekera, S. P.; Agarwal, S. J. Org. Chem. 1988, 53, 5941–5947.
- Kobayashi, M.; Okamoto, Y.; Kitagawa, I. Chem. Pharm. Bull. 1991, 39, 2867–2877.
- Espada, A.; Jimenez, C.; Rodriguez, J.; Crews, P.; Riguera, R. *Tetrahedron* 1992, 48, 8685–8696.
- Lee, H.-S.; Seo, Y.; Cho, K. W.; Rho, J.-R.; Shin, J.; Paul, V. J. J. Nat. Prod. 2000, 63, 915–919.
- Carmely, S.; Roll, M.; Loya, Y.; Kashman, Y. J. Nat. Prod. 1989, 52, 167–170.
- D'Auria, M. V.; Gomez Paloma, L.; Minale, L.; Riccio, R. *Tetrahedron* 1992, 48, 491–498.
- Gulavita, N. K.; Wright, A. E.; Kelly-Borges, M.; Longley, R.; Yarwood, D.; Sills, M. A. *Tetrahedron Lett.* **1994**, *35*, 4299–4302.
- Jaspars, M.; Crews, P. Tetrahedron Lett. 1994, 35, 7501– 7504.
- Antonov, A. S.; Kalinovsky, A. I.; Stonik, V. A.; Evtuschenko, E. V.; Elyakov, G. B. *Russ. Chem. Bull.* 1994, 43, 1265–1269.
- Antonov, A. S.; Kalinovsky, A. I.; Stonik, V. A. Tetrahedron Lett. 1998, 39, 3807–3808.
- Hirota, H.; Takayama, S.; Miyashiro, S.; Ozaki, Y.; Ikegami, S. *Tetrahedron Lett.* **1990**, *31*, 3321–3324.
- Ryu, G.; Choi, B. W.; Lee, B. H.; Hwang, K. H.; Lee, U. C.; Jeong, D. S.; Lee, N. H. *Tetrahedron* 1999, 55, 13171–13178.
- 17. Cafieri, F.; Fattorusso, E.; Taglialatela-Scafati, O. Eur. J. Org. Chem. 1999, 2, 231–238.
- Camagnuolo, C.; Fattorusso, E.; Tadlialatela-Scafati, O. *Tetrahedron* 2001, *57*, 4049–4055.
- Avilov, S. A.; Antonov, A. S.; Drozdova, O. A; Kalinin, V. I.; Kalinovsky, A. I.; Stonik, V. A.; Riguera, R.; Lenis, L. A.; Jimenez, C. J. Nat. Prod. 2000, 63, 65–71.
- Prinser, M. R.; Blunt, J. W.; Munro, M. H. G. J. Nat. Prod. 1989, 52, 657–659.
- Wright, J. L. C.; Mc Innes, A. G.; Shimizu, S.; Smith, D. G.; Walter, J. A.; Idler, D.; Khalil, W. Can. J. Chem. 1978, 56, 1898–1903.